MATH HANDBOOK TRANSPARENCY MASTER

Scientific Notation

Scientists need to express small measurements, such as the mass of the proton at the center of a hydrogen atom (0.000000000000000000000000001673 kg), and large measurements, such as the temperature at the center of the Sun (15000000 K). To do this conveniently, they express the numerical values of small and large measurements in scientific notation, which has two parts.

Thus, the temperature of the Sun, 15 million kelvins, is written as $1.5 \times 10^{7} \mathrm{~K}$ in scientific notation.

Positive Exponents Express 1234.56 in scientific notation.
1234.56

Each time the decimal place is \sim moved one place to the left,

$$
1234.56 \times 10^{0}=123.456 \times 10^{1}
$$

$123.456 \times 10^{1}=12.3456 \times 10^{2}$

$$
12.3456 \times 10^{2}=1.23456 \times 10^{3}
$$

the
exponent is increased by one.

$$
1.23456 \times 10^{3}
$$

Negative Exponents Express 0.00657 in scientific notation.
0.00657

Each time the decimal place is moved one place to the right,
$0.00657 \times 10^{0}=0.0657 \times 10^{-1}$
$0.0657 \times 10^{-1}=0.657 \times 10^{-2}$
$0.657 \times 10^{-2}=6.57 \times 10^{-3}$
6.57×10^{-3}
the
exponent is decreased by one.
\qquad
\qquad

MATH HANDBOOK TRANSPARENCY WORKSHEET

Scientific Notation

Use with Appendix B, Scientific Notation

1. Express each of the following numbers in scientific notation.
a. 230
b. 5601
c. 14100000
d. 56 million
e. $2 / 10$
f. 0.45013
g. 0.089
h. 0.00026
i. 0.000000698
j. 12 thousandth
2. Express each of the following measurements in scientific notation.
a. speed of light in a vacuum, $299792458 \mathrm{~m} / \mathrm{s}$
b. number of seconds in a day, 86400 s
c. mean radius of Earth, 6378 km
d. density of oxygen gas at $0^{\circ} \mathrm{C}$ and pressure of $101 \mathrm{kPa}, 0.00142 \mathrm{~g} / \mathrm{mL}$
e. radius of an argon atom, 0.000000000098 m

SCIENTIFIC NOTATION

\qquad

Scientists very often deal with very small and very large numbers, which can lead to a-pf confusion when counting zeros! We have learned to express these numbers as powers vi 10 . Scientific notation takes the form of $\mathrm{M} \times 10^{n}$ where $1 \leq \mathrm{M}<10$ and " n " represents the number of decimal places to be moved. Positive n indicates the standard form is a large number. Negative n indicates a number between zero and one.

Example 1: Convert 1,500,000 to scientific notation. We move the decimal point so that there is only one digit to its left, a total of 6 places.

$$
1,500,000=1.5 \times 10^{6}
$$

Example 2: Convert 0.000025 to scientific notation. For this, we move the decimal point 5 places to the right.

$$
0.000025=2.5 \times 10^{-5}
$$

(Note that when a number starts out less than one, the exponent is always negative.)

Convert the following to scientific notation.

1. $0.005=$ \qquad
2. $5,050=$ \qquad
3. $1,000=$ \qquad
4. $1,000,000=$ \qquad
5. $0.25=$ \qquad
6. $0.025=$ \qquad
7. $0.0008=$ \qquad
8. $0.0025=$
\qquad
9. $500=$ \qquad
10. $5,000=$ \qquad

Convert the following to standard notation.

1. $1.5 \times 10^{3}=$ \qquad
2. $1.5 \times 10^{-3}=$ \qquad
3. $3.35 \times 10^{-1}=$ \qquad
4. $1.2 \times 10^{-4}=$ \qquad
5. $3.75 \times 10^{-2}=$ \qquad 8. $1 \times 10^{4}=$ \qquad
6. $3.75 \times 10^{2}=$ \qquad 9. $1 \times 10^{-1}=$ \qquad
7. $2.2 \times 10^{5}=$ \qquad

Operations with Scientific

\qquad
\qquad
\qquad

MATH HANDBOOK TRANSPARENCY WORKSHE=

Operations with Scientific Notation

Use with Appendix B, Operations with Scientific Notation

1. Perforn the following operations and express the answers in scientific notation.
a. $\left(1.2 \times\left(0^{5}\right)+\left(5.35 \times 10^{6}\right)\right.$
b. $\left(6.91 \times 10^{-2}\right)+\left(2.4 \times 10^{-3}\right)$
c. $\left(9.70 \times 10^{6}\right)+\left(8.3 \times 10^{5}\right)$
d. $\left(3.67 \times 10^{2}\right)-\left(1.6 \times 10^{1}\right)$
e. $\left(8.41 \times 10^{-5}\right)-\left(7.9 \times 10^{-6}\right)$
f. $\left(1.33 \times 10^{5}\right)-\left(4.9 \times 10^{4}\right)$
2. Perform the following operations and express the answers in scientific notation.
a. $\left(4.3 \times 10^{8}\right) \times\left(2.0 \times 10^{6}\right)$
b. $\left(6.0 \times 10^{3}\right) \times\left(1.5 \times 10^{-2}\right)$
c. $\left(1.5 \times 10^{-2}\right) \times\left(8.0 \times 10^{-1}\right)$
d. $\frac{7.8 \times 10^{3}}{1.2 \times 10^{4}}$
e. $\frac{8.1 \times 10^{-2}}{9.0 \times 10^{2}}$
f. $\frac{6.48 \times 10^{5}}{\left(2.4 \times 10^{4}\right)\left(1.8 \times 10^{-2}\right)}$

Scientific Notation

Use with Appendix B, Scientific Notation

1. Express each of the following numbers in scientific notation.
a. 230

b. 5601 5.601
c. 14100000

$$
1.41 \times 10^{7}
$$

d. 56 million
5.6×10^{7}
e. $2 / 10$

$$
2 \times 10^{-1}
$$

f. $0.450 \quad 13$

$$
4.5013 \times 10^{-7}
$$

g. 0.089 8.9×10^{-2}
h. 0.00026

$$
2.6 \times 10^{-4}
$$

i. $0.0000000698 \quad 6.98=10^{-7}$
j. 12 thousandth
2. Express each of the following measurements in scientific notation.
a. speed of light in a vacuum, $299792458 \mathrm{~m} / \mathrm{s}$
b. number of seconds in a day, 86400 s

$$
8,640 \times 10^{4}
$$

c. mean radius of Earth, 6378 km

$$
6.378 \times 10^{3}
$$

d. density of oxygen gas at $0^{\circ} \mathrm{C}$ and pressure of $101 \mathrm{kPa}, 0.00142 \mathrm{~g} / \mathrm{mL}$
e. radius of an argon atom, 0.000000000098 m

