Understand and Apply

I. Jeff spent $\$ 2$ a day on magazines for 3 days.

Which model illustrates the money Jeff spent on magazines?

2. Is the sign of the product positive or negative?
a) $(+4) \times(+4)$
b) $(+6) \times(-2)$
c) $(+5) \times(+3)$
d) $(+1) \times(-1)$
3. Copy and complete the table.

x	-3	-2	-1	0	+1	+2	+3
0							
+1							
+2							
+3							
+4							

4. Multiply.
a) $(+3) \times(+5)$
b) $(+6) \times(+5)$
c) $(+7) \times(+8)$
d) $(+9) \times(+8)$
e) $(+10) \times(+10)$
f) $\cdot(+11) \times(+11)$
5. Multiply.
a) $(+2) \times(-8)$
b) $(+3) \times(-6)$
c) $(+5) \times(-9)$
d) $(+7) \times(-7)$
e) $(+9) \times(-9)$
f) $(+13) \times(-2)$
6. Multiply.
a) $(+4) \times(+9)$
b) $(+4) \times(-11)$
c) $(+5) \times(+20)$
d) $(+13) \times(-3)$
e) $(+14) \times(-2)$
f) $(+17) \times(+2)$
7. Write and solve a multiplication sentence for each situation.
a) Fiona spends $\$ 5$ per week on bus fare. How much does she spend in 2 weeks? b) Lucy spends $\$ 2$ per week on snacks. How much does she spend in 4 weeks? c) Anton earns $\$ 8$ each week for baby-sitting. How much does he earn in 3 weeks?
8. Write a number sentence to solve each problem.
a) Kendra pays $\$ 3$ per day for bus transportation. How much does she pay in a school week?
b) Kendra earns $\$ 4$ per hour baby-sitting on weekends. How much does she earn for 3 h on Friday and 4 h on Saturday?
c) What integer shows how much money Kendra has at the end of the week?
9. In a trivia game, Brett scored 2 points for every correct answer and lost a point for each mistake. He answered 24 questions correctly and 6 incorrectly. What was his total score?
10. Create an integer multiplication problem of your own. Trade your problem with a classmate and solve it.
II. Estimate, then calculate each product.
a) $71 \times(-19)$
b) 122×121
c) $50 \times(-51)$
d) $61 \times(-49)$
e) $21 \times(-19)$
f) $1251 \times(-1499)$

I．Use a pattern to find the products．
a）$(+4) \times(+2)=$
b）$(+4) \times(-2)=$
$(+3) \times(-2)=$
$(+2) \times(-2)=$
$(+1) \times(-2)=$
$0 \times(-2)=$
$(-1) \times(-2)=$
$(-2) \times(+2)=\square$
$(-2) \times(-2)=$
$(-3) \times(+2)=$
$(-3) \times(-2)=$
$(-4) \times(+2)=$
$(-4) \times(-2)=$

2．Copy and complete the table．

\times	-3	-5	-7	-9	+2	+4	+6
0							
-1							
-2							
-3							
-4							

3．Calculate these products．
a）$(-4) \times(+5)$
b）$(-8) \times(+9)$
c）$(-7) \times(+7)$
d）$(-10) \times(+4)$
e）$(-12) \times(+6)$
f）$(-13) \times(+5)$

4．Multiply．
a）$(-3) \times(-9)$
b）$(-6) \times(-9)$
c）$(-5) \times(-8)$
d）$(-4) \times(-8)$
e）$(-11) \times(-7)$
f）$(-15) \times(-3)$

5．Multiply．
a）$(-16) \times(-6)$
b）$(-14) \times(+4)$
c）$(-7) \times(+12)$
d）$(-8) \times(-10)$
e）$(-9) \times(-11)$
f）$(-17) \times(+3)$

6．Dan said，＂The order of multiplication doesn＇t matter when I multiply．This helps me to multiply a negative number by a positive one． If I want to multiply $(-3) \times(+4)$ ，I can reverse the order of the factors．I think it＇s easier to use tiles to model $(+4) \times(-3)$ ．＂ Do you agree with Dan that order doesn＇t matter？Explain．

7．Follow each calculator keying sequence and write the results．
a） 97 园 13 图
b）© 8 图 4 日
c） 7 图 8 图
8．Use your results from Problem 7 to write step－by－step instructions to multiply $(-9) \times(-11) \times(-1)$ following this calculator sequence．

9．Estimate，then calculate each product．
a）$(-91) \times(-101)$
b）$(-69) \times(+120)$
c）$(+152) \times(-38)$
d）$(-62) \times(-11)$
e）$(-19) \times(+203)$
f）$(-128) \times(-12)$

10．Find each product．
a）$(-1) \times(+1) \times(-1)$
b）$(+1) \times(+1) \times(-1)$
c）$(-1) \times(-1) \times(+1)$
d）$(-1) \times(+1) \times(-1)$
II．What did you discover in Problem 10 about the sign of the product of three integers？ Test your discovery on some other integers．

In Your Journail

